Genetic control of horizontal virus transmission in the chestnut blight fungus, Cryphonectria parasitica.

نویسندگان

  • P Cortesi
  • C E McCulloch
  • H Song
  • H Lin
  • M G Milgroom
چکیده

Vegetative incompatibility in fungi has long been known to reduce the transmission of viruses between individuals, but the barrier to transmission is incomplete. In replicated laboratory assays, we showed conclusively that the transmission of viruses between individuals of the chestnut blight fungus Cryphonectria parasitica is controlled primarily by vegetative incompatibility (vic) genes. By replicating vic genotypes in independent fungal isolates, we quantified the effect of heteroallelism at each of six vic loci on virus transmission. Transmission occurs with 100% frequency when donor and recipient isolates have the same vic genotypes, but heteroallelism at one or more vic loci generally reduces virus transmission. Transmission was variable among single heteroallelic loci. At the extremes, heteroallelism at vic4 had no effect on virus transmission, but transmission occurred in only 21% of pairings that were heteroallelic at vic2. Intermediate frequencies of transmission were observed when vic3 and vic6 were heteroallelic (76 and 32%, respectively). When vic1, vic2, and vic7 were heteroallelic, the frequency of transmission depended on which alleles were present in the donor and the recipient. The effect of heteroallelism at two vic loci was mostly additive, although small but statistically significant interactions (epistasis) were observed in four pairs of vic loci. A logistic regression model was developed to predict the probability of virus transmission between vic genotypes. Heteroallelism at vic loci, asymmetry, and epistasis were the dominant factors controlling transmission, but host genetic background also was statistically significant, indicating that vic genes alone cannot explain all the variation in virus transmission. Predictions from the logistic regression model were highly correlated to independent transmission tests with field isolates. Our model can be used to estimate horizontal transmission rates as a function of host genetics in natural populations of C. parasitica.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Characterization of Vegetative Incompatibility Genes That Restrict Hypovirus Transmission in the Chestnut Blight Fungus Cryphonectria parasitica

Genetic nonself recognition systems such as vegetative incompatibility operate in many filamentous fungi to regulate hyphal fusion between genetically dissimilar individuals and to restrict the spread of virulence-attenuating mycoviruses that have potential for biological control of pathogenic fungi. We report here the use of a comparative genomics approach to identify seven candidate polymorph...

متن کامل

Invasion history and demographic pattern of Cryphonectria hypovirus 1 across European populations of the chestnut blight fungus

We reconstructed the invasion history of the fungal virus Cryphonectria hypovirus 1 (CHV-1) in Europe, which infects the chestnut blight fungus Cryphonectria parasitica. The pattern of virus evolution was inferred based on nucleotide sequence variation from isolates sampled across a wide area in Europe at different points in time. Phylogeny and time estimates suggested that CHV-1 was introduced...

متن کامل

Characteristics of Hypovirulent Strains of Chestnut Blight Fungus, Cryphonectria parasitica, Isolated in Korea

Chestnut blight disease caused by Cryphonectria parasitica is widely distributed throughout chestnut tree plantations in Korea. We surveyed 65 sites located at 9 provinces in South Korea, and isolated 248 virulent and 3 hypovirulent strains of chestnut blight fungus. Hypovirulent strains had dsRNA virus in the cytoplasm, which is one of the typical characteristics of hypovirulent strains. In ad...

متن کامل

Engineering super mycovirus donor strains of chestnut blight fungus by systematic disruption of multilocus vic genes.

Transmission of mycoviruses that attenuate virulence (hypovirulence) of pathogenic fungi is restricted by allorecognition systems operating in their fungal hosts. We report the use of systematic molecular gene disruption and classical genetics for engineering fungal hosts with superior virus transmission capabilities. Four of five diallelic virus-restricting allorecognition [vegetative incompat...

متن کامل

Hypovirus molecular biology: from Koch's postulates to host self-recognition genes that restrict virus transmission.

The idea that viruses can be used to control fungal diseases has been a driving force in mycovirus research since the earliest days. Viruses in the family Hypoviridae associated with reduced virulence (hypovirulence) of the chestnut blight fungus, Cryphonectria parasitica, have held a prominent place in this research. This has been due in part to the severity of the chestnut blight epidemics in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 159 1  شماره 

صفحات  -

تاریخ انتشار 2001